UTTOXETER PYRAMID: AGREED CALCULATION POLICY

First Schools / Middle Schools (Reception - Y6)

Reviewed: September 2022

EYFS

- Children count reliably with numbers from 1 to 20, place them in order and say which number is one more or one less than a given number.
- Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer.
- They solve problems, including doubling, halving and sharing.

Year 1

Addition and subtraction

Pupils should be taught to:

- read, interpret and practise writing mathematical statements involving addition (+), subtraction (-) and equals (=) signs accurately.
- add and subtract 1-digit and 2-digit numbers to $20(9+9,18-9)$, including zero.
- add three 1-digit numbers.
- recall and use number bonds and related subtraction facts within 20.
- solve simple word problems that involve addition and subtraction.

Multiplication and division

Pupils should be taught to:

- recognise and write the multiplication symbol (x) and the division symbol (\div) in mathematical statements, calculating the answer with the teacher using concrete objects.
- solve word problems involving simple multiplication and division, with teacher support.

Year 2

Addition and subtraction

Pupils should be taught to:

- rapidly recall and use addition and subtraction facts to 20.
- add and subtract numbers with up to two 2-digits including using column addition without carrying and column subtraction without borrowing.
- add and subtract numbers mentally including:
- a 2-digit number and ones
- a 2-digit number and tens
- two 2-digit numbers
- use subtraction in 'take away' and 'find the difference' problems.
- recognise and show that addition can be done in any order (commutative) and subtraction cannot.
- recognise and use addition and subtraction as inverse operations including to check calculations.
- solve word problems with addition and subtraction of numbers with up to 2 -digits.

Multiplication and division

Pupils should be taught to:

- recall multiplication and division facts for the 2,3,5 and 10 multiplication tables.
- use the multiplication (\times), division (\div) and equals $(=)$ signs to read and write mathematical statements.
- write and calculate mathematical statements for multiplication and division within the multiplication tables.
- recognise and use the inverse relationship between multiplication and division to check calculations.
- ensure pupils can recognise and show that multiplication can be done in any order (commutative) and division cannot.
- solve word problems involving multiplication and division.

Year 3

Addition and subtraction

Pupils should be taught to:

- add and subtract numbers with up to 3 digits, including using columnar addition and subtraction.
- accurately add and subtract numbers mentally including: pairs of one-and 2-digit numbers; 3-digit numbers and ones; 3-digit numbers and tens; 3-digit numbers and hundreds.
- solve word problems including missing number problems, using number facts, place value, and more complex addition and subtraction.

Multiplication and division

Pupils should be taught to:

- recall and use multiplication and division facts for the 2, 3, 4, 5, 10 and 11 multiplication tables (and 8 through repeated doubling).
- write and calculate mathematical statements for multiplication and division within the multiplication tables; and for 2-digit numbers $\times 1$-digit numbers, using mental and written methods.
- solve word problems involving the four operations, including missing number problems.

Year 4

Addition and subtraction

Pupils should be taught to:

- add and subtract numbers using formal written methods with up to 4 digits.
- accurately add and subtract numbers mentally including two 2-digit numbers.
- estimate, within a range, the answer to a calculation and use inverse operations to check answers.

Multiplication and division

Pupils should be taught to:

- recall multiplication and division facts for multiplication tables up to 12×12.
- mentally perform multiplication and division calculations quickly and accurately, including multiplying by 0 and dividing by 1.
- multiply or divide 2-digit and 3-digit numbers by a 1-digit number using formal written methods; interpret remainders appropriately as integers.
- recognise and use factor pairs within 144.
- solve word problems involving the four operations.
- find the effect of dividing a 2-digit number by 10 and 100, identifying the value of the digits in the answer as units, tenths and hundredths.

Year 5

Addition and subtraction

Pupils should be taught to:

- add and subtract whole numbers with up to 5 digits, including using formal written methods.
- add and subtract numbers mentally with increasingly large numbers.
- add and subtract numbers with up to three decimal places.

Multiplication and division

Pupils should be taught to:

- identify multiples including common multiples, and factors including common factors.
- know and use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- establish whether a number up to 100 is prime and recall the prime numbers up to 19 .
- multiply numbers up to 4-digits by a 1 or 2-digit number using a formal written method, including long multiplication.
- accurately multiply and divide numbers mentally drawing upon known facts.
- divide numbers up to 4 digits by a 1-digit number and 10 and interpret remainders appropriately.
- multiply and divide numbers by 10,100 and 1000.
- recognise and use square numbers and square roots and the notation for square (2) and square root ($\sqrt{ }$)
- solve word problems involving addition and subtraction, multiplication and division.

Year 6

Addition, subtraction, multiplication and division
Pupils should be taught to:

- add and subtract negative integers.
- multiply numbers with at least 4-digits by 2-digits of whole number using long multiplication.
- divide numbers up to 4-digits by a 2-digit whole number using long division, and interpret remainders as whole number remainders, fractions, decimals or by rounding.
- perform mental calculations, including with mixed operations and large numbers.
- use estimation to check answers to calculations and determine in the context of a problem whether an answer should be rounded, or written as a fraction or a decimal.
- carry out combined operations involving the four operations accurately and state the order of operations.
- solve word problems involving addition, subtraction, multiplication and division.
- identify the value of each digit to three decimal places and multiply and divide numbers up to three decimal place by 10,100 and 1000.
- multiply and divide numbers with up to two decimal places by 1-digit and 2-digit whole numbers
- recognise and use division in the context of fractions, percentages and ratio.
- solve linear missing number problems, including those involving decimals and fractions, and find pairs of number that satisfy number sentences involving two unknowns.

The following pages show our schools' written calculation methods for maths. They are organised by number operations - Addition (+), Subtraction (-), Division (\div) and Multiplication (x). Each section shows the written calculation methods for each operation starting from simple methods progressing to more advanced ones. Children will move through these stages according to ability

Children have the ability to "see" or visualize a
small amount of objects and know how many there
are without counting.
Perceptual subitising when it is a group of up to 5
objects.
See conceptual subitising.
Children begin to combine groups of
objects or pictures and use concrete
apparatus. They will be encouraged to
say the number sentences aloud, e.g.
three and two is five.
Use the part-part whole model to show
which numbers add together to make
another number. Initially, physically
moving the objects to make the whole
and then progressing to a written
numeral.

$5-1=4$

Children develop an understanding of what 'less' means and be able to say what is one less than a given number. 'Fewer' should be modelled language.

Children begin to use objects, pictures and concrete apparatus to relate subtraction to 'taking away' by counting how many are left.

Children are encouraged to speak their number sentence aloud, 'seven take-away three makes 4.'

Number lines are used so that the children can jump back to 'count down'.

How many groups of 2 are there? 3 groups of $2=6$

"How many legs on four ducks?"

How many wheels are there altogether?

Children begin with concrete representations using objects.

Begin to count in 2's, 5's and 10's both in context with objects, then pictorially and then counting aloud as the abstract.

Real-life contexts are used, and children are encouraged to speak the number sentence, 'Two lots of five on my hands is 10 fingers'.

Children will be asked questions like, 'How many legs are on 4 ducks?'

Real-life contexts to count repeated groups of the same size.

12 shared equally by 3 is 4

Practical concrete representations

- Cut/ fold in half

Division can be introduced through halving or sharing an equal amount into 2 groups.

Children begin with mostly pictorial representations linked to real life contexts:

Grouping Model Mum has 6 socks. She grouped them into pairs. How many pairs did she make?

Sharing Model I have 10 sweets. I want to share them with my friend. How many will we have each?

Children have a go at recording the calculation that has been carried out: e.g. by drawing pictures in groups or by arranging concrete apparatus into groups.

Use the part-part whole model to show half of a number. Initially, physically moving the objects from the whole to make the two parts and then progressing to an abstract written numeral.

ADDITION

Children are taught to understand addition as combining two sets and counting on. Calculation Method

Year 1

| $2+3$ = |
| :--- | :--- |
| At a party, I eat 2 cakes and my |
| friend eats 3 . |
| How many cakes did we eat |
| altogether? |\quad| Children draw a picture to help |
| :--- |
| them work out the answer. |

We would then progress to;	We would then progress to counting on from 7.
$7+\ldots$	

$7+9=$	Draw an empty number line. Children will be taught to place the largest number at the left side of the line. Add 1 to get to 10. Then add the 6. This method is also used when adding 19, 29, 39 etc.
	Children use a sound understanding of adding 10 to adapt calculations. Instead of adding 9, they add 10 then adjust the calculation by subtracting 1 . This is also used for adding other numbers e.g. $15+19(15+20,-1)$ This is a mental strategy and children are introduced to this using a 100 square.
$127+74=$ There are 127 boys and 74 girls in a school. How many children are there altogether?	Children will start their number line at 127. Add a jump of 70 to 197. Either add 3 then 1 or simply a jump of 4 to land on 201.

Year 2		
$\begin{aligned} & 20+ \\ & 30+ \\ & \hline 50+ \end{aligned}$	$\begin{array}{r} 24 \\ 35 \\ \hline 59 \end{array}$	Towards the end of Year 2 children will be introduced to a formal written method. No carrying is involved at this early stage and the expanded method should be taught first to ensure children understand the place value. The value of the numbers should not exceed 2 digits.
Year 3		
$\begin{array}{r} 127 \\ +\quad 74 \\ \hline \end{array}$	$\begin{aligned} & 100+20+7 \\ & +\quad 70+4 \\ & \hline 100+90+11=201 \end{aligned}$	Children will be taught written methods for those calculations they cannot do 'in their heads'. Expanded methods build on mental methods and make the value of the digits clear to children. The language used is very important $(7+4,20+70,100+0$, then 100+90+11 - add this mentally * In this expanded method, when children get to the stage of adding their partitioned digits together they may be required to 'carry' numbers (see below). The value of the numbers should not exceed 3 digits.
$\begin{array}{r} 298 \\ 358 \\ 1 \quad 1 \\ \hline 656 \end{array}$		When children are confident using the expanded method, this can be 'squashed' into the traditional compact method. (Carrying!)

Year 4	
$2786+2568=$ 2786 people visited the museum last month. The numbers increased by 2568 this month. How many people altogether visited this month? $\begin{array}{r} 2786 \\ +\quad 2568 \\ \hline 5354 \\ \hline 111 \end{array}$	When children are confident using the expanded method, this can be 'squashed' into the traditional compact method. (Carrying!) The value of the numbers should not exceed 4 digits.
Year 5	
$\begin{aligned} & 20+4+0.5 \\ & \frac{30+9+0.8}{50+13+1.3}=64.3 \\ & 24.5 \\ & \frac{39.8}{\frac{64.3}{1}} \end{aligned}$	Add whole numbers up to 5 digits. Decimals numbers will be introduced this year. Children will start with the expanded method to ensure their understanding of place value is secure before moving onto the compact method.
Year 6	
$\begin{array}{r} 24.566 \\ 39.700 \\ 0.560 \\ \hline 64.826 \\ \hline 11 \end{array}$	Year 6 will use the compact method and add larger numbers and decimals up to 3 places. In order to keep the place value the children may add $0 s$ in the empty decimal columns.

SUBTRACTION

Children are taught to understand subtraction as taking away and finding the difference (counting up).
Calculation Method
Explanation

Year 1	
5-2 = I had five balloons but two burst. How many did I have left? (4) (4) Take away A teddy bear costs $£ 5$ and a doll costs $£ 3$. How much more does the bear cost? (1)1011) (1)(1) ? ? Find the difference	Drawing a picture helps children to visualise the problem.
$7-3=$ Mum baked 7 biscuits. I ate 3. How many were left? $\bigcirc \bigcirc \bigcirc \bigcirc$ Take away Lisa has 7 felt tip pens and Tim has 3. How many more does Lisa have? Find the difference	Using dots or tally marks is quicker than drawing a detailed picture.
Sarah has 9p and John has 13p. How much more does John have?	

Year 2	
$\begin{gathered} 80+9 \\ -50+5 \\ \hline 30+4=34 \\ \hline \end{gathered}$ $\begin{array}{r} 89 \\ -\quad 55 \\ \hline 34 \end{array}$	Children will be introduced to a formal written method. No exchanging (decomposition) from other columns is introduced at this early stage and the expanded method should be taught first to ensure children understand the place value. The value of the numbers should not exceed 2 digits.
Year 3	
$128-59=$	For calculations where mental methods can be used, counting on in jumps will still be the main method used. The children will develop their ability to perform this mentally and with larger numbers.
Expanded decomposition $\begin{array}{r} 600140 \\ 749 \\ -273 \\ - \end{array} \begin{gathered} 700+40+9 \\ \underline{200+70+3} \\ \underline{400+70+6=476} \end{gathered}$	When children are secure using the column method, expanded decomposition is introduced. Partition the numbers and set out in columns. Always start subtracting the units first. If the top number is smaller than the bottom number, then you will need to take from the column on the left. Remember to adjust the columns to show the new amounts. Finally, recombine the answers to give your final answer. The value of the numbers should not exceed 3 digits.

Decomposition $\begin{array}{r} 5^{6} 7^{1} 2 \\ -245 \\ \hline 327 \\ \hline \end{array}$	Once the children are secure with expanded, they can move onto to the shortened/compact method. This is just the same as above, but the numbers are not partitioned.
Year 4	
$\begin{array}{rrrr} 2 & 1 & 3 & 1 \\ 3^{2} & 5 \not A 7 \\ 2 & 6 & 2 & 8 \\ \hline 0 & 918 & 9 \\ \hline \end{array}$	The children will use the same methods as year 3; column and decomposition but the value of the digits should not exceed 4 digits.
Year 5	
	The children will use the same methods as in years 3 and 4; column and decomposition but the value of the digits should not exceed 5 digits. Decimals will be introduced up to 3 decimal places - in this instance, expanded decomposition should be taught first to ensure all children understand the place value.
Year 6	
	The children will use the same methods as in years 3, 4 and 5; column and decomposition with a range of larger numbers. They will also add and subtract negative integers - this will be done using a number line.

Children are taught to understand division as sharing and grouping

Calculation Method

Explanation

| Year 1 |
| :--- | :--- | :--- |
| $6 \div 2=$ |
| 6 Easter eggs are shared between 2 |
| children. How many eggs do they |
| get each? | | More pictures! Drawing often gives |
| :--- |
| children a way into solving the |
| problem. |

Year 2	
$9 \div 3=3$	The above method progresses into a number line. You add on 'lots of 3' or 'sets of 3 ' until you reach 9 . You then count up how many lots of 3 you have added on to get the answer 3. By the end of Year 2 the children will be introduced to the concept of remainders.
Year 3	
Mental Strategy $16 \div 4=4$ A chew bar costs 6 p. How many can I buy with 24p?	To work out how many lots of 4 there are in 16 , draw jumps of 4 along a number line. This shows you need 4 jumps of 4 to reach 16.
Mental Strategy $85 \div 5=$	It would take a long time for the children to jump in fives to 85 so children can jump on in bigger 'jumps'.
	A jump of 10 groups of 5 takes you to 50. Then you need another 7 lots of 5 which is 35 will take you to 85 . Altogether this is 17 fives. Calculations should be 2 digit by 1 digit.

Year 4/5	
Short Division (Bus-stop) $\begin{gathered} 19 \\ 4 \longdiv { 7 ^ { 3 } 6 } \end{gathered}$ $5 \longdiv { 0 \quad 2 \quad 7 r 1 }$	Teacher would explain to the children that we ignore place value when teaching short division as a strategy. Firstly, work out how many fours fit into 7. Write the answer above 7 and the reminder in front of the next digit of the number to be divided. Then count up in fours to see how many now fit into 36 and write the answer above the digit 6 . If the divisor does not fit exactly into the final number, you will be left with a remainder to be recorded next to your answer. E.g. $136 \div 5=27 r 1$
Year 5/6	
Short Division $\frac{1923}{4 \longdiv { 7 ^ { 3 } 6 9 ^ { 1 2 } 2 }}$	In year 5 children will divide up to 4 digits by a 1 digit number and interpret remainders appropriately Firstly, work out how many fours fit into 7. Write the answer above 7 and the reminder in front of the next digit of the number to be divided. Teacher would explain to the children that we ignore place value when teaching short division as a strategy.

	Then count up in fours to see how many now fit into 36 and write the answer above the digit 6 . If the divisor does not fit exactly into the final number, you will be left with a remainder to be recorded next to your answer.
$\begin{array}{r} 120 r 5 \\ 8 \longdiv { 9 6 5 } \end{array}$ $\begin{aligned} & 120 \text { and } 5 / 8 \\ & 8 \longdiv { 9 ^ { 1 6 5 } } \end{aligned}$ The 8 becomes the denominator of the fraction remainder. $\begin{array}{r} 120.625 \\ 8 \longdiv { 9 { } ^ { 1 } 6 5 . { } ^ { 5 } 0 ^ { 2 } 0 ^ { 4 } 0 } \end{array}$	Remainders can be interpreted as fractions, decimals or rounding. $\text { E.g. } \begin{aligned} 965 \div 8 & =120 r 5 \\ & =1205 / 8 \\ & =120.625 \\ & =121 \text { (rounded to the } \end{aligned}$ nearest whole number) Examples will be taught and practised that include 0 and when divisors divide exactly.

Year 5/6	
Long Division	
$\begin{gathered} 033 r 3 \\ 1 5 \longdiv { 4 6 8 } \\ 45 \\ 018 \\ \frac{15}{03} \end{gathered}$	Teacher would explain to the children that we ignore place value when teaching long division as a strategy. Long division requires the children to be competent and confident with their tables, and subtraction before they can use it as a division strategy. $468 \div 15$ How many 15 s in 4 ? The answer is 0 so this is placed above the 4, above the 'busstop'.. The next question is how many 15 s are in 46? (We have put the 4 and 6 together to make 46). The answer is 3 , so this is placed above the 6, above the division gate. 3×15 is 45 , this is written under the 46 and a subtraction calculation is done to work out the remainder which is 1 . The remaining digit (8) is then brought down to join the 1 to form 18. So the next question we ask is; how many 15 s are there in 18? The answer is 1 , so this is written above the 8 , above the division gate. 1×15 is 15 , this is written under the 18 and a subtraction calculation is done to work out the final remainder, which in this example is 3 .

MULTIPLICATION

Children are taught to understand multiplication as repeated addition. It can also describe an array (see below).

Calculation Method

Explanation

Year 1

$2 \times 4=$
Each child has two feet. How many feet do four children have?

$2+2+2+2$
$5 \times 3=$
There are 5 cakes in a pack. How many cakes in 3 packs?

$3 \times 4=$
A chew costs 4p. How much do 3 chews cost?

3 lots of 4
3 sets of 4
3(4)
3 times table visual aid.

A picture can also be useful for early multiplication.

We say "2, four times."

Dots or tally marks are often drawn in groups. This shows 3 groups of 5 .

Drawing an array (4 rows of 3 or 3 columns of 4) gives children an image of the answer. It also helps develop the understanding that 4×3 is equivalent to 3×4.

Year 2

$3 \times 4=\quad$ Drawing an array (4 rows of 3 or 3
A chew costs 4p. How much do 3 chews cost?

3 lots of 4
3 sets of 4
$4 \times 3=$
A chew costs 3p. How much do 4 chews cost?

Drawing an array (3 rows of 4 or 4 columns of 3) gives children an image of the answer. It also helps develop the understanding that 4×3 is equivalent to 3×4.
$13 \times 3=39$
There are 13 biscuits in a packet. How many biscuits in 3 packets?

When numbers get bigger, it is inefficient to do lots of small jumps. Split 13 into parts (10 and 3). This gives you two jumps (10×3 and 3×3). The answer is the number you land on 39 .

Year 3	
Mental Strategy $26 \times 3=$ Partitioning. $\begin{array}{r} 20 \times 3=60 \\ 6 \times 3=18 \end{array}$ KNOWN FACTS $2 \times 3=6$ $20 \times 3=60$ $60+18=78$	Children use the partitioning method to multiply mentally and when multiplying by a unit (single digit). Partition 26 (into 20 and 6) and use KNOWN FACTS to multiply by 3. $\begin{aligned} & 2 \times 3=6 \text { so } 20 \times 3=60 \\ & 6 \times 3=18 \end{aligned}$ Then add the answers together $60+18=78$
Expanded Column Multiplication HTU 34 $x \quad 6$ $\begin{array}{r} 24(4 \times 6) \\ \frac{180}{\frac{204}{1}}(30 \times 6) \end{array}$	Children use short multiplication to multiply TU $\times U$ Starting with the units column $U \times U$ $(4 \times 6=24)$, place the answer underneath in line with the place value. Then multiply $T \times U(30 \times 6=180)$, writing the answer underneath the 24 so that they can be added.
Year 4	
Short Multiplication	Children use short multiplication to multiply TU $\times U$ To understand place value, we would explain the following: Starting with the units column $U \times U(6 \times$ $4=24$). Place the 4 from 24 into the answer in the units column and carry the 2 tens below the multiplier in the tens column.

	Next, multiply $T \times U(30 \times 6=180)$. Add your 2 carried tens from below the answer column to equal 200. This is 20 Tens therefore you write 20 in the answer column under H and T. Final answer $=204$ When teaching the children our dialogue would be: Step 1-U $\cup \cup 4 \times 6=24$, put the 4 in the answer and carry the 2 . Step $2 T \times \cup 3 \times 6=18$, add the $2=20$. Put the 20 in the answer box. Final answer= 204.
Short Multiplication	Children use short multiplication to multiply HTU $\times U$
Th HTU 325	To understand place value we would explain the following:
$\begin{array}{ll} x & 7 \\ \hline 2275 \\ \hline \end{array}$	Starting with $U \times U(5 \times 7=35)$. Place the 5 from the 35 into the answer in the units column and carry the 3 tens below the multipier in the tens column.
13	Then multiply $T \times U(20 \times 7=140)$ Add your carried 3 tens ($140+30=170$) Place the 7 Tens in the Tens column of your answer and carry the 1 hundred below the multipler in the hundreds column.
	Next multiply the $\mathrm{H} \times \mathrm{U}(300 \times 7=2100)$. This is 21 hundreds so now add the carried 1 hundred to make 22 Hundreds (2200).
	Finally place the 22 under the Th and H columns. Final answer $=2275$
	When teaching the children our dialogue would be:
	Step 1-U $U \cup 5 \times 7=35$ put 5 in the answer carry the 3.

	Step $2 T \times U 2 \times 7=14$ add the $3=17$. Put the 7 in the answer carry the 1. Step 3-H $\times 3 \times 7=21$ add the $1=22$. Write 22 in the answer box. Final answer $=2275$
Year 5	
Short Multiplication Th H TU $\begin{array}{r} 1325 \\ \times \quad 7 \\ \hline 9275 \\ \hline 213 \end{array}$	Children use short multiplication to multiply ThHTU $x U$ To understand place value, we would explain the following: Starting with $U \times U(5 \times 7=35)$. Place the 5 from the 35 into the answer in the units column and carry the 3 tens below the multiplier in the tens column. Then multiply $T \times U(20 \times 7=140)$. Add your carried 3 tens ($140+30=170$). Place the 7 Tens in the Tens column of your answer and carry the 1 hundred below the multiplier in the hundreds column. Next multiply the $\mathrm{H} \times \mathrm{U}(300 \times 7=2100)$. This is 21 hundreds so now add the carried 1 hundred to make 22 Hundreds (2200). Finally. multiply the $\operatorname{Th} \times \mathrm{U}(1000 \times 7)$. Add your carried 2 thousands to make 9 thousands (9000). Finally place the 22 under the Th and H columns. Final answer $=2275$ When teaching the children our dialogue would be: Step 1-U $\cup \cup 5 \times 7=35$ put 5 in the answer carry the 3. Step $2 T \times \cup 2 \times 7=14$ add the $3=17$. Put the 7 in the answer carry the 1 .

	Step $3-H \times U 3 \times 7=21$ add the $1=22$. Write 22 in the answer box. Final answer $=9275$
Long Multiplication.	When teaching the children our dialogue would be:
59×26	Step 1- $\cup \times \cup 6 \times 9=54$ put the 4 in the
Th HTU	answer and carry the 5 below that line.
$\begin{array}{r} 59 \\ \times \quad 26 \end{array}$	Step $2-U \times T 6 \times 5=30$. Add the 5 to make 35. Put 35 in the answer, First line answer 354.
354	Step 3-Put a 0 in the answer under the units column to hold the place value as you are about to multiply everything by 10 .
$\begin{array}{ccc} 1 & 1 & \mathbf{O} \\ 1 & 1 \end{array}$	
1534	Step $4 T \times \cup 2 \times 9=18$, put 8 in the answer, carry 1 below that line.
1	Step $5 T \times T 2 \times 5=10$, add the $1=11$, put 11 in the answer. Second line answer 1180.
	Step 6 add first and second line answers together. Final answer= 1534.
Year 6	
As year 5 , with larger numbers and decimals	The method for teaching long multiplication with larger numbers is exactly the same.
42.5	
$\times \quad 21$	When multiplying decimals, children will be taught to ignore the decimal
425	point whilst calculating the solution. They will then count how many
8500	numbers in the question were
$\frac{1}{8925}$	AFTER the decimal point. This
$\begin{array}{ll} 8 & 9 \\ \hline \end{array}$	provides the position of the decimal

